Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tritosylate of diethanolamine

Il Yoon, Ki-Min Park and Shim Sung Lee*

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, South Korea Correspondence e-mail: sslee@nongae.gsnu.ac.kr

Received 8 September 2000 Accepted 5 December 2000

The crystal structure of the tritosylated diethanolamine N,Nbis(tosyloxyethyl)-p-toluenesulfonamide, $C_{25}H_{29}NO_8S_3$, has been determined. The conformation of the molecule is such that the tosyl groups are as far apart as possible. The molecules are interconnected by $C-H\cdots O$ hydrogen bonds and form columns in the crystal structure.

Comment

The development of mixed-donor cyclic ligands has received considerable attention due to their ability to discriminate between metal ions (Adam *et al.*, 1995). Among tridentate cyclic ligands, [9]aneNS₂ is interesting since it has both hard N-donor and soft S-donor atoms (Blake *et al.*, 1998). One strategy for the synthesis of macrocycles based on an NS₂-donor set involves the title compound, (I), as an important precursor, followed by macrocyclization with the corresponding dithiol and detosylation (Blake *et al.*, 1998). During our search for new macrocycles containing NS₂X_n (X = O or S, n = 0-4) mixed-donor atoms, we have determined the crystal structure of this compound.

The backbone of the molecule (Fig. 1) is fully stretched and the torsion angles in both $-NCH_2CH_2O$ - units correspond to the *anti* conformation [179.3 (2) and 167.7 (2)°]. The three tosyl groups are separated from one another as much as possible, presumably to minimize steric repulsion. The interplanar angle between the two *O*-tosyl aromatic rings is 76.7 (1)°, and those between the *O*-tosyl and *N*-tosyl aromatic rings are 53.3 (1) and 27.9 (1)°.

Although H atoms have been included in their idealized positions, some aromatic and methylene H atoms are situated close to the sulfonyl O atoms of the *O*-tosyl groups, providing evidence for $C-H\cdots$ O hydrogen bonds (Taylor & Kennard,

1982). As illustrated in Fig. 2, the molecules are interconnected by hydrogen bonds in such a way that they form columns parallel to the crystallographic c axis. Aromatic and aliphatic $C-H \cdots O$ hydrogen bonds alternate in the column; their parameters are given in Table 1.

Figure 1

Perspective view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level and H atoms have been omitted for clarity.

Figure 2

Stereoview of one molecular column stabilized by alternating aromatic (dashed lines) and aliphatic (dotted lines) $C-H \cdots O$ hydrogen bonds. Non-hydrogen-bonded H atoms have been omitted for clarity.

Experimental

Compound (I) was prepared by the reaction of diethanolamine and tosyl chloride according to the published procedure of Searle & Geue (1984). Single crystals suitable for X-ray crystallograpic analysis were prepared by vapor diffusion of diethyl ether into an acetonitrile solution of compound (I) at room temperature.

Crystal data

C25H29NO8S3	$D_x = 1.394 \text{ Mg m}^{-3}$
$M_r = 567.67$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 17590
a = 11.3887 (10) Å	reflections
b = 22.0576 (19) Å	$\theta = 1.85 - 28.39^{\circ}$
c = 11.7301 (10) Å	$\mu = 0.322 \text{ mm}^{-1}$
$\beta = 113.3300 \ (10)^{\circ}$	T = 293 (2) K
$V = 2705.8 (4) \text{ Å}^3$	Plate, colourless
Z = 4	$0.40 \times 0.30 \times 0.10 \text{ mm}$

Data collection

CCD area-detector diffractometer	$R_{\rm int} = 0.047$
φ and ω scans	$\theta_{\rm max} = 28.39^{\circ}$
17590 measured reflections	$h = -15 \rightarrow 13$
6572 independent reflections	$k = -29 \rightarrow 23$
3614 reflections with $I > 2\sigma(I)$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0680P)^2]$
$wR(F^2) = 0.136$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.003	$(\Delta/\sigma)_{\rm max} < 0.001$
6572 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

H atoms were added at calculated positions (C-H = 0.96 Å) and were refined using a riding model. They were assigned isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameter of their parent atoms.

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4A\cdotsO8^{i}$	0.96	2.50	3.451 (4)	174
C20−H20···O6 ⁱⁱ	0.96	2.53	3.376 (3)	148

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a grant (2000-1-12200-001-1) from the Basic Research Program of the Korea Science & Engineering Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1127). Services for accessing these data are described at the back of the journal.

References

Adam, K. R., Baldwin, D. S., Duckworth, P. A., Lindoy, L. F., McPartlin, M., Bashall, A., Powell, H. R. & Tasker, P. A. (1995). J. Chem. Soc. Dalton Trans. pp. 1127-1131.

Blake, A. J., Danks, J. P., Fallis, I. A., Harrison, A., Li, W.-S., Parsons, S., Ross, S. A., Whittaker, G. & Schröder, M. (1998). J. Chem Soc. Dalton Trans. pp. 3969-3976

Searle, G. H. & Geue, R. J. (1984). Aust. J. Chem. 37, 959-970.

Siemens (1996). SMART, SAINT (Version 4.0) and SHELXTL (Version 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.